Question
Simplify the expression
k4−6k3+11k2−6k
Evaluate
k(k−1)(k−2)(k−3)
Multiply the terms
More Steps

Evaluate
k(k−1)
Apply the distributive property
k×k−k×1
Multiply the terms
k2−k×1
Any expression multiplied by 1 remains the same
k2−k
(k2−k)(k−2)(k−3)
Multiply the terms
More Steps

Evaluate
(k2−k)(k−2)
Apply the distributive property
k2×k−k2×2−k×k−(−k×2)
Multiply the terms
More Steps

Evaluate
k2×k
Use the product rule an×am=an+m to simplify the expression
k2+1
Add the numbers
k3
k3−k2×2−k×k−(−k×2)
Use the commutative property to reorder the terms
k3−2k2−k×k−(−k×2)
Multiply the terms
k3−2k2−k2−(−k×2)
Use the commutative property to reorder the terms
k3−2k2−k2−(−2k)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
k3−2k2−k2+2k
Subtract the terms
More Steps

Evaluate
−2k2−k2
Collect like terms by calculating the sum or difference of their coefficients
(−2−1)k2
Subtract the numbers
−3k2
k3−3k2+2k
(k3−3k2+2k)(k−3)
Apply the distributive property
k3×k−k3×3−3k2×k−(−3k2×3)+2k×k−2k×3
Multiply the terms
More Steps

Evaluate
k3×k
Use the product rule an×am=an+m to simplify the expression
k3+1
Add the numbers
k4
k4−k3×3−3k2×k−(−3k2×3)+2k×k−2k×3
Use the commutative property to reorder the terms
k4−3k3−3k2×k−(−3k2×3)+2k×k−2k×3
Multiply the terms
More Steps

Evaluate
k2×k
Use the product rule an×am=an+m to simplify the expression
k2+1
Add the numbers
k3
k4−3k3−3k3−(−3k2×3)+2k×k−2k×3
Multiply the numbers
k4−3k3−3k3−(−9k2)+2k×k−2k×3
Multiply the terms
k4−3k3−3k3−(−9k2)+2k2−2k×3
Multiply the numbers
k4−3k3−3k3−(−9k2)+2k2−6k
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
k4−3k3−3k3+9k2+2k2−6k
Subtract the terms
More Steps

Evaluate
−3k3−3k3
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)k3
Subtract the numbers
−6k3
k4−6k3+9k2+2k2−6k
Solution
More Steps

Evaluate
9k2+2k2
Collect like terms by calculating the sum or difference of their coefficients
(9+2)k2
Add the numbers
11k2
k4−6k3+11k2−6k
Show Solution

Find the roots
k1=0,k2=1,k3=2,k4=3
Evaluate
k(k−1)(k−2)(k−3)
To find the roots of the expression,set the expression equal to 0
k(k−1)(k−2)(k−3)=0
Separate the equation into 4 possible cases
k=0k−1=0k−2=0k−3=0
Solve the equation
More Steps

Evaluate
k−1=0
Move the constant to the right-hand side and change its sign
k=0+1
Removing 0 doesn't change the value,so remove it from the expression
k=1
k=0k=1k−2=0k−3=0
Solve the equation
More Steps

Evaluate
k−2=0
Move the constant to the right-hand side and change its sign
k=0+2
Removing 0 doesn't change the value,so remove it from the expression
k=2
k=0k=1k=2k−3=0
Solve the equation
More Steps

Evaluate
k−3=0
Move the constant to the right-hand side and change its sign
k=0+3
Removing 0 doesn't change the value,so remove it from the expression
k=3
k=0k=1k=2k=3
Solution
k1=0,k2=1,k3=2,k4=3
Show Solution
