Question
Simplify the expression
30720k4rp3w1+30720k4rp3w
Evaluate
k×7÷2k5÷(r×7)÷8÷5p2÷(6p×1)÷8÷8w+1
Use the commutative property to reorder the terms
7k÷2k5÷(r×7)÷8÷5p2÷(6p×1)÷8÷8w+1
Divide the terms
More Steps

Evaluate
7k÷2k5
Rewrite the expression
2k57k
Use the product rule aman=an−m to simplify the expression
2k5−17
Reduce the fraction
2k47
2k47÷(r×7)÷8÷5p2÷(6p×1)÷8÷8w+1
Use the commutative property to reorder the terms
2k47÷7r÷8÷5p2÷(6p×1)÷8÷8w+1
Divide the terms
More Steps

Evaluate
2k47÷7r
Multiply by the reciprocal
2k47×7r1
Cancel out the common factor 7
2k41×r1
Multiply the terms
2k4r1
2k4r1÷8÷5p2÷(6p×1)÷8÷8w+1
Divide the terms
More Steps

Evaluate
2k4r1÷8
Multiply by the reciprocal
2k4r1×81
Multiply the terms
2k4r×81
Multiply the terms
16k4r1
16k4r1÷5p2÷(6p×1)÷8÷8w+1
Divide the terms
More Steps

Evaluate
16k4r1÷5p2
Multiply by the reciprocal
16k4r1×5p21
Multiply the terms
16k4r×5p21
Multiply the numbers
80k4rp21
80k4rp21÷(6p×1)÷8÷8w+1
Multiply the terms
80k4rp21÷6p÷8÷8w+1
Divide the terms
More Steps

Evaluate
80k4rp21÷6p
Multiply by the reciprocal
80k4rp21×6p1
Multiply the terms
80k4rp2×6p1
Multiply the terms
More Steps

Evaluate
80k4rp2×6p
Multiply the numbers
480k4rp2×p
Multiply the terms
480k4rp3
480k4rp31
480k4rp31÷8÷8w+1
Divide the terms
More Steps

Evaluate
480k4rp31÷8
Multiply by the reciprocal
480k4rp31×81
Multiply the terms
480k4rp3×81
Multiply the terms
3840k4rp31
3840k4rp31÷8w+1
Divide the terms
More Steps

Evaluate
3840k4rp31÷8w
Multiply by the reciprocal
3840k4rp31×8w1
Multiply the terms
3840k4rp3×8w1
Multiply the numbers
30720k4rp3w1
30720k4rp3w1+1
Reduce fractions to a common denominator
30720k4rp3w1+30720k4rp3w30720k4rp3w
Solution
30720k4rp3w1+30720k4rp3w
Show Solution

Find the excluded values
k=0,r=0,p=0,w=0
Evaluate
k×7÷2k5÷(r×7)÷8÷5p2÷(6p×1)÷8÷8w+1
To find the excluded values,set the denominators equal to 0
2k5=0r×7=05p2=06p×1=08w=0
Solve the equations
More Steps

Evaluate
2k5=0
Rewrite the expression
k5=0
The only way a power can be 0 is when the base equals 0
k=0
k=0r×7=05p2=06p×1=08w=0
Solve the equations
More Steps

Evaluate
r×7=0
Use the commutative property to reorder the terms
7r=0
Rewrite the expression
r=0
k=0r=05p2=06p×1=08w=0
Solve the equations
More Steps

Evaluate
5p2=0
Rewrite the expression
p2=0
The only way a power can be 0 is when the base equals 0
p=0
k=0r=0p=06p×1=08w=0
Solve the equations
More Steps

Evaluate
6p×1=0
Multiply the terms
6p=0
Rewrite the expression
p=0
k=0r=0p=0p=08w=0
Solve the equations
k=0r=0p=0p=0w=0
Solution
k=0,r=0,p=0,w=0
Show Solution
