Question
Simplify the expression
98l4−1
Evaluate
l4×98−1
Solution
98l4−1
Show Solution

Find the roots
l1=−984983,l2=984983
Alternative Form
l1≈−0.317829,l2≈0.317829
Evaluate
l4×98−1
To find the roots of the expression,set the expression equal to 0
l4×98−1=0
Use the commutative property to reorder the terms
98l4−1=0
Move the constant to the right-hand side and change its sign
98l4=0+1
Removing 0 doesn't change the value,so remove it from the expression
98l4=1
Divide both sides
9898l4=981
Divide the numbers
l4=981
Take the root of both sides of the equation and remember to use both positive and negative roots
l=±4981
Simplify the expression
More Steps

Evaluate
4981
To take a root of a fraction,take the root of the numerator and denominator separately
49841
Simplify the radical expression
4981
Multiply by the Conjugate
498×49834983
Multiply the numbers
More Steps

Evaluate
498×4983
The product of roots with the same index is equal to the root of the product
498×983
Calculate the product
4984
Reduce the index of the radical and exponent with 4
98
984983
l=±984983
Separate the equation into 2 possible cases
l=984983l=−984983
Solution
l1=−984983,l2=984983
Alternative Form
l1≈−0.317829,l2≈0.317829
Show Solution
