Question
Solve the equation
x=2log17(10)+7
Alternative Form
x≈8.625423
Evaluate
log10(17)×(7−x)=−2
Divide both sides
log10(17)log10(17)×(7−x)=log10(17)−2
Divide the numbers
7−x=log10(17)−2
Use b−a=−ba=−ba to rewrite the fraction
7−x=−log10(17)2
Move the constant to the right side
−x=−log10(17)2−7
Subtract the numbers
More Steps

Evaluate
−log10(17)2−7
Reduce fractions to a common denominator
−log10(17)2−log10(17)7log10(17)
Write all numerators above the common denominator
log10(17)−2−7log10(17)
Rewrite in terms of common logarithms
More Steps

Evaluate the logarithm
−2−7log10(17)
Rewrite in terms of common logarithms
log10(1001)−7log10(17)
Calculate
log10(1001)+log10(17−7)
Use the logarithm product rule
log10(1001×17−7)
Evaluate the logarithm
log10(100×1771)
log10(17)log10(100×1771)
Use the logarithm base change rule
log17(100×1771)
Write the number in exponential form with the base of 100×177
log17((100×177)−1)
Rewrite the logarithm
−log17(100×177)
−x=−log17(100×177)
Change the signs on both sides of the equation
x=log17(100×177)
Solution
More Steps

Evaluate
log17(100×177)
Use loga(x×y)=loga(x)+loga(y) to transform the expression
log17(100)+log17(177)
Simplify the expression
More Steps

Evaluate
log17(100)
Write the number in exponential form with the base of 10
log17(102)
Use logabn=nlogab to simplify the expression
2log17(10)
2log17(10)+log17(177)
Use logaan=n to simplify the expression
2log17(10)+7
x=2log17(10)+7
Alternative Form
x≈8.625423
Show Solution
