Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
x∈∅
Alternative Form
No solution
Evaluate
log10(3)×(2−x)×log10(31)×(x−1)>log10(333)
Multiply the terms
log10(3)×log10(31)×(2−x)(x−1)>log10(333)
Move the expression to the left side
log10(3)×log10(31)×(2−x)(x−1)−log10(333)>0
Expand the expression
More Steps

Calculate
log10(3)×log10(31)×(2−x)(x−1)
Simplify
More Steps

Evaluate
log10(3)×log10(31)×(2−x)
Apply the distributive property
log10(3)×log10(31)×2−log10(3)×log10(31)×x
Use the commutative property to reorder the terms
2log10(3)×log10(31)−log10(3)×log10(31)×x
(2log10(3)×log10(31)−log10(3)×log10(31)×x)(x−1)
Apply the distributive property
2log10(3)×log10(31)×x−2log10(3)×log10(31)×1−log10(3)×log10(31)×x×x−(−log10(3)×log10(31)×x×1)
Any expression multiplied by 1 remains the same
2log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x×x−(−log10(3)×log10(31)×x×1)
Multiply the terms
2log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2−(−log10(3)×log10(31)×x×1)
Any expression multiplied by 1 remains the same
2log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2−(−log10(3)×log10(31)×x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2+log10(3)×log10(31)×x
Add the terms
More Steps

Evaluate
2log10(3)×log10(31)×x+log10(3)×log10(31)×x
Collect like terms by calculating the sum or difference of their coefficients
(2+1)×log10(3)×log10(31)×x
Add the numbers
3log10(3)×log10(31)×x
3log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2
3log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2−log10(333)>0
Rewrite the expression
3log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(3)×log10(31)×x2−log10(333)=0
Simplify
3log10(3)×log10(31)×x−2log10(3)×log10(31)−log10(333)−log10(3)×log10(31)×x2=0
Add or subtract both sides
3log10(3)×log10(31)×x−log10(3)×log10(31)×x2=2log10(3)×log10(31)+log10(333)
Divide both sides
−log10(3)×log10(31)3log10(3)×log10(31)×x−log10(3)×log10(31)×x2=−log10(3)×log10(31)2log10(3)×log10(31)+log10(333)
Evaluate
−3x+x2=−log10(3)×log10(31)2log10(3)×log10(31)+log10(333)
Add the same value to both sides
−3x+x2+49=−log10(3)×log10(31)2log10(3)×log10(31)+log10(333)+49
Simplify the expression
(x−23)2=4log10(31)log3(333431log10(3))
Since the left-hand side is always positive or 0,and the right-hand side is always negative,the statement is false for any value of x
x∈/R
There are no key numbers,so choose any value to test,for example x=0
x=0
Solution
More Steps

Evaluate
log10(3)×log10(31)×(2−0)(0−1)>log10(333)
Simplify
More Steps

Evaluate
log10(3)×log10(31)×(2−0)(0−1)
Removing 0 doesn't change the value,so remove it from the expression
log10(3)×log10(31)×2(0−1)
Removing 0 doesn't change the value,so remove it from the expression
log10(3)×log10(31)×2(−1)
Any expression multiplied by 1 remains the same
−log10(3)×log10(31)×2
Use the commutative property to reorder the terms
−2log10(3)×log10(31)
−2log10(3)×log10(31)>log10(333)
Calculate
−1.423121>log10(333)
Calculate
−1.423121>2.522444
Check the inequality
false
x∈∅
Alternative Form
No solution
Show Solution
