Question
Simplify the expression
212log10(2)×x2−2log10(2)×x3−618log10(2)×x
Evaluate
log10(4)×((x−3)(103x−x2))
Remove the parentheses
log10(4)×(x−3)(103x−x2)
Simplify
More Steps

Evaluate
log10(4)
Write the number in exponential form with the base of 2
log10(22)
Calculate
2log10(2)
2log10(2)×(x−3)(103x−x2)
Multiply the terms
More Steps

Evaluate
2log10(2)×(x−3)
Apply the distributive property
2log10(2)×x−2log10(2)×3
Multiply the terms
2log10(2)×x−6log10(2)
(2log10(2)×x−6log10(2))(103x−x2)
Apply the distributive property
2log10(2)×x×103x−2log10(2)×x×x2−6log10(2)×103x−(−6log10(2)×x2)
Multiply the terms
More Steps

Evaluate
2log10(2)×x×103x
Multiply the numbers
206log10(2)×x×x
Multiply the terms
206log10(2)×x2
206log10(2)×x2−2log10(2)×x×x2−6log10(2)×103x−(−6log10(2)×x2)
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
206log10(2)×x2−2log10(2)×x3−6log10(2)×103x−(−6log10(2)×x2)
Multiply the numbers
206log10(2)×x2−2log10(2)×x3−618log10(2)×x−(−6log10(2)×x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
206log10(2)×x2−2log10(2)×x3−618log10(2)×x+6log10(2)×x2
Solution
More Steps

Evaluate
206log10(2)×x2+6log10(2)×x2
Collect like terms by calculating the sum or difference of their coefficients
(206+6)×log10(2)×x2
Add the numbers
212log10(2)×x2
212log10(2)×x2−2log10(2)×x3−618log10(2)×x
Show Solution

Factor the expression
log10(4)×x(x−3)(103−x)
Evaluate
log10(4)×((x−3)(103x−x2))
Remove the parentheses
log10(4)×(x−3)(103x−x2)
Factor the expression
More Steps

Evaluate
103x−x2
Rewrite the expression
x×103−x×x
Factor out x from the expression
x(103−x)
log10(4)×(x−3)x(103−x)
Solution
log10(4)×x(x−3)(103−x)
Show Solution
