Question
Solve the inequality
x∈(0,1)∪(3,9)
Evaluate
log31(x)>logx(3)−25
Find the domain
More Steps

Evaluate
{x>0x=1
Find the intersection
x∈(0,1)∪(1,+∞)
log31(x)>logx(3)−25,x∈(0,1)∪(1,+∞)
Add or subtract both sides
log31(x)−(logx(3)−25)>0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
log31(x)−logx(3)+25>0
Calculate
More Steps

Evaluate
−logx(3)
Use the logarithm base change rule
log31(x)−log31(3)
Simplify
More Steps

Evaluate
−log31(3)
Write the number in exponential form with the base of 3
−log3−1(3)
Use logama=m1 to simplify the expression
−(−1)
Calculate
1
log31(x)1
log31(x)+log31(x)1+25>0
Solve the equation using substitution t=log31(x)
t+t1+25>0
Convert the expressions
2t2t2+2+5t>0
Separate the inequality into 2 possible cases
{2t2+2+5t>02t>0{2t2+2+5t<02t<0
Solve the inequality
More Steps

Evaluate
2t2+2+5t>0
Move the constant to the right side
2t2+5t>0−2
Add the terms
2t2+5t>−2
Evaluate
t2+25t>−1
Add the same value to both sides
t2+25t+1625>−1+1625
Evaluate
t2+25t+1625>169
Evaluate
(t+45)2>169
Take the 2-th root on both sides of the inequality
(t+45)2>169
Calculate
t+45>43
Separate the inequality into 2 possible cases
t+45>43t+45<−43
Calculate
More Steps

Evaluate
t+45>43
Move the constant to the right side
t>43−45
Subtract the numbers
t>−21
t>−21t+45<−43
Calculate
More Steps

Evaluate
t+45<−43
Move the constant to the right side
t<−43−45
Subtract the numbers
t<−2
t>−21t<−2
Find the union
t∈(−∞,−2)∪(−21,+∞)
{t∈(−∞,−2)∪(−21,+∞)2t>0{2t2+2+5t<02t<0
Solve the inequality
{t∈(−∞,−2)∪(−21,+∞)t>0{2t2+2+5t<02t<0
Solve the inequality
More Steps

Evaluate
2t2+2+5t<0
Move the constant to the right side
2t2+5t<0−2
Add the terms
2t2+5t<−2
Evaluate
t2+25t<−1
Add the same value to both sides
t2+25t+1625<−1+1625
Evaluate
t2+25t+1625<169
Evaluate
(t+45)2<169
Take the 2-th root on both sides of the inequality
(t+45)2<169
Calculate
t+45<43
Separate the inequality into 2 possible cases
{t+45<43t+45>−43
Calculate
More Steps

Evaluate
t+45<43
Move the constant to the right side
t<43−45
Subtract the numbers
t<−21
{t<−21t+45>−43
Calculate
More Steps

Evaluate
t+45>−43
Move the constant to the right side
t>−43−45
Subtract the numbers
t>−2
{t<−21t>−2
Find the intersection
−2<t<−21
{t∈(−∞,−2)∪(−21,+∞)t>0{−2<t<−212t<0
Solve the inequality
{t∈(−∞,−2)∪(−21,+∞)t>0{−2<t<−21t<0
Find the intersection
t>0{−2<t<−21t<0
Find the intersection
t>0−2<t<−21
Find the union
t∈(−2,−21)∪(0,+∞)
Substitute back
−2<log31(x)<−21log31(x)>0
Solve the inequality for x
More Steps

Substitute back
{log31(x)<−21log31(x)>−2
Calculate
More Steps

Evaluate
log31(x)<−21
For 0<31<1 the expression log31(x)<−21 is equivalent to x>(31)−21
x>(31)−21
Evaluate the power
x>321
Use anm=nam to transform the expression
x>3
{x>3log31(x)>−2
Calculate
More Steps

Evaluate
log31(x)>−2
For 0<31<1 the expression log31(x)>−2 is equivalent to x<(31)−2
x<(31)−2
Evaluate the power
x<9
{x>3x<9
3<x<9log31(x)>0
Solve the inequality for x
More Steps

Substitute back
log31(x)>0
For 0<31<1 the expression log31(x)>0 is equivalent to x<(31)0
x<(31)0
Evaluate the power
x<1
3<x<9x<1
Find the union
x∈(−∞,1)∪(3,9)
Check if the solution is in the defined range
x∈(−∞,1)∪(3,9),x∈(0,1)∪(1,+∞)
Solution
x∈(0,1)∪(3,9)
Show Solution
