Question
Solve the inequality
x>log3(10)
Alternative Form
x∈(log3(10),+∞)
Evaluate
logx(log9(3x−9))<1
Find the domain
More Steps

Evaluate
⎩⎨⎧3x−9>0x>0log9(3x−9)>0x=1
Calculate
More Steps

Evaluate
3x−9>0
Rewrite the expression
3x>9
Rewrite in exponential form
3x>32
Since the bases are equal and greater than 1,compare the exponents
x>2
⎩⎨⎧x>2x>0log9(3x−9)>0x=1
Calculate
More Steps

Evaluate
log9(3x−9)>0
For 9>1 the expression log9(3x−9)>0 is equivalent to 3x−9>90
3x−9>90
Evaluate the power
3x−9>1
Add or subtract both sides
3x>1+9
Calculate
3x>10
Take the logarithm of both sides
log3(3x)>log3(10)
Evaluate the logarithm
x>log3(10)
⎩⎨⎧x>2x>0x>log3(10)x=1
Find the intersection
x>log3(10)
logx(log9(3x−9))<1,x>log3(10)
Separate the inequality into 2 possible cases
logx(log9(3x−9))<1,x>1logx(log9(3x−9))<1,x<1
Calculate
More Steps

Evaluate
logx(log9(3x−9))<1,x>1
For x>1 the expression logx(log9(3x−9))<1 is equivalent to log9(3x−9)<x
log9(3x−9)<x,x>1
Calculate
More Steps

Evaluate
log9(3x−9)<x
Rewrite the expression
3x−9<9x
Move the expression to the left side
3x−9−9x<0
Rewrite the expression
3x−9−32x<0
Solve the equation using substitution t=3x
t−9−t2<0
Move the constant to the right side
t−t2<0−(−9)
Add the terms
t−t2<9
Evaluate
t2−t>−9
Add the same value to both sides
t2−t+41>−9+41
Evaluate
t2−t+41>−435
Evaluate
(t−21)2>−435
Calculate
t∈R
Calculate
x∈R
x∈R,x>1
x∈R,x>1logx(log9(3x−9))<1,x<1
Calculate
More Steps

Evaluate
logx(log9(3x−9))<1,x<1
For x>1 the expression logx(log9(3x−9))<1 is equivalent to log9(3x−9)>x
log9(3x−9)>x,x<1
Calculate
More Steps

Evaluate
log9(3x−9)>x
Rewrite the expression
3x−9>9x
Move the expression to the left side
3x−9−9x>0
Rewrite the expression
3x−9−32x>0
Solve the equation using substitution t=3x
t−9−t2>0
Move the constant to the right side
t−t2>0−(−9)
Add the terms
t−t2>9
Evaluate
t2−t<−9
Add the same value to both sides
t2−t+41<−9+41
Evaluate
t2−t+41<−435
Evaluate
(t−21)2<−435
Calculate
t∈/R
Calculate
x∈/R
x∈/R,x<1
x∈R,x>1x∈/R,x<1
Find the intersection
x>1x∈/R,x<1
Find the intersection
x>1x∈/R
Find the union
x>1
Check if the solution is in the defined range
x>1,x>log3(10)
Solution
x>log3(10)
Alternative Form
x∈(log3(10),+∞)
Show Solution
