Question
Find the roots
m1=25−165,m2=25+165
Alternative Form
m1≈−3.922616,m2≈8.922616
Evaluate
m2−5m−35
To find the roots of the expression,set the expression equal to 0
m2−5m−35=0
Substitute a=1,b=−5 and c=−35 into the quadratic formula m=2a−b±b2−4ac
m=25±(−5)2−4(−35)
Simplify the expression
More Steps

Evaluate
(−5)2−4(−35)
Multiply the numbers
More Steps

Evaluate
4(−35)
Multiplying or dividing an odd number of negative terms equals a negative
−4×35
Multiply the numbers
−140
(−5)2−(−140)
Rewrite the expression
52−(−140)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+140
Evaluate the power
25+140
Add the numbers
165
m=25±165
Separate the equation into 2 possible cases
m=25+165m=25−165
Solution
m1=25−165,m2=25+165
Alternative Form
m1≈−3.922616,m2≈8.922616
Show Solution
