Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for m
−23+3<m<23+3
Alternative Form
m∈(−23+3,23+3)
Evaluate
m2−6m−3<0
Rewrite the expression
m2−6m−3=0
Add or subtract both sides
m2−6m=3
Add the same value to both sides
m2−6m+9=3+9
Simplify the expression
(m−3)2=12
Take the root of both sides of the equation and remember to use both positive and negative roots
m−3=±12
Simplify the expression
m−3=±23
Separate the equation into 2 possible cases
m−3=23m−3=−23
Move the constant to the right-hand side and change its sign
m=23+3m−3=−23
Move the constant to the right-hand side and change its sign
m=23+3m=−23+3
Determine the test intervals using the critical values
m<−23+3−23+3<m<23+3m>23+3
Choose a value form each interval
m1=−1m2=3m3=7
To determine if m<−23+3 is the solution to the inequality,test if the chosen value m=−1 satisfies the initial inequality
More Steps

Evaluate
(−1)2−6(−1)−3<0
Simplify
More Steps

Evaluate
(−1)2−6(−1)−3
Evaluate the power
1−6(−1)−3
Simplify
1+6−3
Calculate the sum or difference
4
4<0
Check the inequality
false
m<−23+3 is not a solutionm2=3m3=7
To determine if −23+3<m<23+3 is the solution to the inequality,test if the chosen value m=3 satisfies the initial inequality
More Steps

Evaluate
32−6×3−3<0
Simplify
More Steps

Evaluate
32−6×3−3
Multiply the numbers
32−18−3
Evaluate the power
9−18−3
Subtract the numbers
−12
−12<0
Check the inequality
true
m<−23+3 is not a solution−23+3<m<23+3 is the solutionm3=7
To determine if m>23+3 is the solution to the inequality,test if the chosen value m=7 satisfies the initial inequality
More Steps

Evaluate
72−6×7−3<0
Simplify
More Steps

Evaluate
72−6×7−3
Multiply the numbers
72−42−3
Evaluate the power
49−42−3
Subtract the numbers
4
4<0
Check the inequality
false
m<−23+3 is not a solution−23+3<m<23+3 is the solutionm>23+3 is not a solution
Solution
−23+3<m<23+3
Alternative Form
m∈(−23+3,23+3)
Show Solution
