Question
Simplify the expression
4308m2−2
Evaluate
m2×14308−2
Divide the terms
m2×4308−2
Solution
4308m2−2
Show Solution

Factor the expression
2(2154m2−1)
Evaluate
m2×14308−2
Divide the terms
m2×4308−2
Use the commutative property to reorder the terms
4308m2−2
Solution
2(2154m2−1)
Show Solution

Find the roots
m1=−21542154,m2=21542154
Alternative Form
m1≈−0.021547,m2≈0.021547
Evaluate
m2×14308−2
To find the roots of the expression,set the expression equal to 0
m2×14308−2=0
Divide the terms
m2×4308−2=0
Use the commutative property to reorder the terms
4308m2−2=0
Move the constant to the right-hand side and change its sign
4308m2=0+2
Removing 0 doesn't change the value,so remove it from the expression
4308m2=2
Divide both sides
43084308m2=43082
Divide the numbers
m2=43082
Cancel out the common factor 2
m2=21541
Take the root of both sides of the equation and remember to use both positive and negative roots
m=±21541
Simplify the expression
More Steps

Evaluate
21541
To take a root of a fraction,take the root of the numerator and denominator separately
21541
Simplify the radical expression
21541
Multiply by the Conjugate
2154×21542154
When a square root of an expression is multiplied by itself,the result is that expression
21542154
m=±21542154
Separate the equation into 2 possible cases
m=21542154m=−21542154
Solution
m1=−21542154,m2=21542154
Alternative Form
m1≈−0.021547,m2≈0.021547
Show Solution
