Question
Simplify the expression
m4−56m5−100m2
Evaluate
m4−4m3×14m2−20m2×5
Multiply
More Steps

Multiply the terms
−4m3×14m2
Multiply the terms
−56m3×m2
Multiply the terms with the same base by adding their exponents
−56m3+2
Add the numbers
−56m5
m4−56m5−20m2×5
Solution
m4−56m5−100m2
Show Solution

Factor the expression
m2(m2−56m3−100)
Evaluate
m4−4m3×14m2−20m2×5
Multiply
More Steps

Multiply the terms
4m3×14m2
Multiply the terms
56m3×m2
Multiply the terms with the same base by adding their exponents
56m3+2
Add the numbers
56m5
m4−56m5−20m2×5
Multiply the terms
m4−56m5−100m2
Rewrite the expression
m2×m2−m2×56m3−m2×100
Solution
m2(m2−56m3−100)
Show Solution

Find the roots
m1≈−1.20729,m2=0
Evaluate
m4−4m3×14m2−20m2×5
To find the roots of the expression,set the expression equal to 0
m4−4m3×14m2−20m2×5=0
Multiply
More Steps

Multiply the terms
4m3×14m2
Multiply the terms
56m3×m2
Multiply the terms with the same base by adding their exponents
56m3+2
Add the numbers
56m5
m4−56m5−20m2×5=0
Multiply the terms
m4−56m5−100m2=0
Factor the expression
m2(m2−56m3−100)=0
Separate the equation into 2 possible cases
m2=0m2−56m3−100=0
The only way a power can be 0 is when the base equals 0
m=0m2−56m3−100=0
Solve the equation
m=0m≈−1.20729
Solution
m1≈−1.20729,m2=0
Show Solution
