Question
Simplify the expression
−8000m4−100
Evaluate
m4×40i2×200−100
Evaluate the power
m4×40(−1)×200−100
Solution
More Steps

Multiply the terms
m4×40(−1)×200
Any expression multiplied by 1 remains the same
−m4×40×200
Multiply the terms
−m4×8000
Use the commutative property to reorder the terms
−8000m4
−8000m4−100
Show Solution

Factor the expression
−100(80m4+1)
Evaluate
m4×40i2×200−100
Evaluate the power
m4×40(−1)×200−100
Multiply
More Steps

Multiply the terms
m4×40(−1)×200
Any expression multiplied by 1 remains the same
−m4×40×200
Multiply the terms
−m4×8000
Use the commutative property to reorder the terms
−8000m4
−8000m4−100
Solution
−100(80m4+1)
Show Solution

Find the roots
m1=−204500+204500i,m2=204500−204500i
Alternative Form
m1≈−0.236435+0.236435i,m2≈0.236435−0.236435i
Evaluate
m4×40i2×200−100
To find the roots of the expression,set the expression equal to 0
m4×40i2×200−100=0
Evaluate the power
m4×40(−1)×200−100=0
Multiply
More Steps

Multiply the terms
m4×40(−1)×200
Any expression multiplied by 1 remains the same
−m4×40×200
Multiply the terms
−m4×8000
Use the commutative property to reorder the terms
−8000m4
−8000m4−100=0
Move the constant to the right-hand side and change its sign
−8000m4=0+100
Removing 0 doesn't change the value,so remove it from the expression
−8000m4=100
Change the signs on both sides of the equation
8000m4=−100
Divide both sides
80008000m4=8000−100
Divide the numbers
m4=8000−100
Divide the numbers
More Steps

Evaluate
8000−100
Cancel out the common factor 100
80−1
Use b−a=−ba=−ba to rewrite the fraction
−801
m4=−801
Take the root of both sides of the equation and remember to use both positive and negative roots
m=±4−801
Simplify the expression
More Steps

Evaluate
4−801
To take a root of a fraction,take the root of the numerator and denominator separately
4−8041
Simplify the radical expression
4−801
Simplify the radical expression
More Steps

Evaluate
4−80
Rewrite the expression
245×(22+22i)
Apply the distributive property
245×22+245×22i
Multiply the numbers
420+245×22i
Multiply the numbers
420+420×i
420+420×i1
Multiply by the Conjugate
(420+420×i)(420−420×i)420−420×i
Calculate
More Steps

Evaluate
(420+420×i)(420−420×i)
Use (a+b)(a−b)=a2−b2 to simplify the product
(420)2−(420×i)2
Evaluate the power
25−(420×i)2
Evaluate the power
25−(−25)
Calculate
45
45420−420×i
Simplify
45420−45420i
Rearrange the numbers
More Steps

Evaluate
45420
Multiply by the Conjugate
45×5420×5
Multiply the numbers
45×54500
Multiply the numbers
204500
204500−45420i
Rearrange the numbers
More Steps

Evaluate
−45420
Multiply by the Conjugate
45×5−420×5
Multiply the numbers
45×5−4500
Multiply the numbers
20−4500
Calculate
−204500
204500−204500i
m=±(204500−204500i)
Separate the equation into 2 possible cases
m=204500−204500im=−204500+204500i
Solution
m1=−204500+204500i,m2=204500−204500i
Alternative Form
m1≈−0.236435+0.236435i,m2≈0.236435−0.236435i
Show Solution
