Question  
 Simplify the expression
n2−3n−3
Evaluate
n×n−1×n−2n−3
Multiply the terms
n2−1×n−2n−3
Multiply the terms
n2−n−2n−3
Solution
        More Steps
        
Evaluate
−n−2n
Collect like terms by calculating the sum or difference of their coefficients
(−1−2)n
Subtract the numbers
−3n
n2−3n−3
        Show Solution
        
Find the roots
n1=23−21,n2=23+21
Alternative Form
 n1≈−0.791288,n2≈3.791288
Evaluate
n×n−1×n−2n−3
To find the roots of the expression,set the expression equal to 0
n×n−1×n−2n−3=0
Multiply the terms
n2−1×n−2n−3=0
Any expression multiplied by 1 remains the same
n2−n−2n−3=0
Subtract the terms
        More Steps
        
Simplify
n2−n−2n
Subtract the terms
        More Steps
        
Evaluate
−n−2n
Collect like terms by calculating the sum or difference of their coefficients
(−1−2)n
Subtract the numbers
−3n
n2−3n
n2−3n−3=0
Substitute a=1,b=−3 and c=−3 into the quadratic formula n=2a−b±b2−4ac
n=23±(−3)2−4(−3)
Simplify the expression
        More Steps
        
Evaluate
(−3)2−4(−3)
Multiply the numbers
        More Steps
        
Evaluate
4(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−4×3
Multiply the numbers
−12
(−3)2−(−12)
Rewrite the expression
32−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+12
Evaluate the power
9+12
Add the numbers
21
n=23±21
Separate the equation into 2 possible cases
n=23+21n=23−21
Solution
n1=23−21,n2=23+21
Alternative Form
n1≈−0.791288,n2≈3.791288
        Show Solution
        