Question
Find the roots
n1=21−40001,n2=21+40001
Alternative Form
n1≈−99.50125,n2≈100.50125
Evaluate
n2−n−10000
To find the roots of the expression,set the expression equal to 0
n2−n−10000=0
Substitute a=1,b=−1 and c=−10000 into the quadratic formula n=2a−b±b2−4ac
n=21±(−1)2−4(−10000)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−10000)
Evaluate the power
1−4(−10000)
Multiply the numbers
More Steps

Evaluate
4(−10000)
Multiplying or dividing an odd number of negative terms equals a negative
−4×10000
Multiply the numbers
−40000
1−(−40000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+40000
Add the numbers
40001
n=21±40001
Separate the equation into 2 possible cases
n=21+40001n=21−40001
Solution
n1=21−40001,n2=21+40001
Alternative Form
n1≈−99.50125,n2≈100.50125
Show Solution
