Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
n1=95−9031,n2=95+9031
Alternative Form
n1≈−0.031574,n2≈190.031574
Evaluate
n2−10n×19=6
Multiply the terms
n2−190n=6
Move the expression to the left side
n2−190n−6=0
Substitute a=1,b=−190 and c=−6 into the quadratic formula n=2a−b±b2−4ac
n=2190±(−190)2−4(−6)
Simplify the expression
More Steps

Evaluate
(−190)2−4(−6)
Multiply the numbers
More Steps

Evaluate
4(−6)
Multiplying or dividing an odd number of negative terms equals a negative
−4×6
Multiply the numbers
−24
(−190)2−(−24)
Rewrite the expression
1902−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1902+24
Evaluate the power
36100+24
Add the numbers
36124
n=2190±36124
Simplify the radical expression
More Steps

Evaluate
36124
Write the expression as a product where the root of one of the factors can be evaluated
4×9031
Write the number in exponential form with the base of 2
22×9031
The root of a product is equal to the product of the roots of each factor
22×9031
Reduce the index of the radical and exponent with 2
29031
n=2190±29031
Separate the equation into 2 possible cases
n=2190+29031n=2190−29031
Simplify the expression
More Steps

Evaluate
n=2190+29031
Divide the terms
More Steps

Evaluate
2190+29031
Rewrite the expression
22(95+9031)
Reduce the fraction
95+9031
n=95+9031
n=95+9031n=2190−29031
Simplify the expression
More Steps

Evaluate
n=2190−29031
Divide the terms
More Steps

Evaluate
2190−29031
Rewrite the expression
22(95−9031)
Reduce the fraction
95−9031
n=95−9031
n=95+9031n=95−9031
Solution
n1=95−9031,n2=95+9031
Alternative Form
n1≈−0.031574,n2≈190.031574
Show Solution
