Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for n
−19+3<n<19+3
Alternative Form
n∈(−19+3,19+3)
Evaluate
n2−6n−10<0
Rewrite the expression
n2−6n−10=0
Add or subtract both sides
n2−6n=10
Add the same value to both sides
n2−6n+9=10+9
Simplify the expression
(n−3)2=19
Take the root of both sides of the equation and remember to use both positive and negative roots
n−3=±19
Separate the equation into 2 possible cases
n−3=19n−3=−19
Move the constant to the right-hand side and change its sign
n=19+3n−3=−19
Move the constant to the right-hand side and change its sign
n=19+3n=−19+3
Determine the test intervals using the critical values
n<−19+3−19+3<n<19+3n>19+3
Choose a value form each interval
n1=−2n2=3n3=8
To determine if n<−19+3 is the solution to the inequality,test if the chosen value n=−2 satisfies the initial inequality
More Steps

Evaluate
(−2)2−6(−2)−10<0
Simplify
More Steps

Evaluate
(−2)2−6(−2)−10
Multiply the numbers
(−2)2+12−10
Evaluate the power
4+12−10
Calculate the sum or difference
6
6<0
Check the inequality
false
n<−19+3 is not a solutionn2=3n3=8
To determine if −19+3<n<19+3 is the solution to the inequality,test if the chosen value n=3 satisfies the initial inequality
More Steps

Evaluate
32−6×3−10<0
Simplify
More Steps

Evaluate
32−6×3−10
Multiply the numbers
32−18−10
Evaluate the power
9−18−10
Subtract the numbers
−19
−19<0
Check the inequality
true
n<−19+3 is not a solution−19+3<n<19+3 is the solutionn3=8
To determine if n>19+3 is the solution to the inequality,test if the chosen value n=8 satisfies the initial inequality
More Steps

Evaluate
82−6×8−10<0
Simplify
More Steps

Evaluate
82−6×8−10
Multiply the numbers
82−48−10
Evaluate the power
64−48−10
Subtract the numbers
6
6<0
Check the inequality
false
n<−19+3 is not a solution−19+3<n<19+3 is the solutionn>19+3 is not a solution
Solution
−19+3<n<19+3
Alternative Form
n∈(−19+3,19+3)
Show Solution
