Question
Simplify the expression
−80n7
Evaluate
n2×1×(n×1)×2n3(−5n×8)
Remove the parentheses
n2×1×n×1×2n3(−5n×8)
Rewrite the expression
n2×1×n×1×2n3(−5)n×8
Rewrite the expression
n2×n×2n3(−5)n×8
Rewrite the expression
−n2×n×2n3×5n×8
Multiply the terms with the same base by adding their exponents
−n2+1+3+1×2×5×8
Add the numbers
−n7×2×5×8
Multiply the terms
More Steps

Evaluate
2×5×8
Multiply the terms
10×8
Multiply the numbers
80
−n7×80
Solution
−80n7
Show Solution

Find the roots
n=0
Evaluate
n2×1×(n×1)(2n3)(−5n×8)
To find the roots of the expression,set the expression equal to 0
n2×1×(n×1)(2n3)(−5n×8)=0
Any expression multiplied by 1 remains the same
n2×1×n(2n3)(−5n×8)=0
Multiply the terms
n2×1×n×2n3(−5n×8)=0
Multiply the terms
n2×1×n×2n3(−40n)=0
Multiply the terms
More Steps

Multiply the terms
n2×1×n×2n3(−40n)
Rewrite the expression
n2×n×2n3(−40n)
Any expression multiplied by 1 remains the same
n2×n×2n3(−40)n
Rewrite the expression
−n2×n×2n3×40n
Multiply the terms with the same base by adding their exponents
−n2+1+3+1×2×40
Add the numbers
−n7×2×40
Multiply the terms
−n7×80
Use the commutative property to reorder the terms
−80n7
−80n7=0
Change the signs on both sides of the equation
80n7=0
Rewrite the expression
n7=0
Solution
n=0
Show Solution
