Question
Function
Find the first partial derivative with respect to ϵ
Find the first partial derivative with respect to ϕ
∂ϵ∂ν=96π21×ϕ4
Evaluate
ν=21+6(4π)2ϵ×ϕ4
Simplify
More Steps

Evaluate
21+6(4π)2ϵ×ϕ4
Multiply the terms
More Steps

Evaluate
6(4π)2
Evaluate the power
6×16π2
Multiply the numbers
96π2
21+96π2ϵ×ϕ4
Multiply the terms
21+96π2ϵϕ4
ν=21+96π2ϵϕ4
Find the first partial derivative by treating the variable ϕ as a constant and differentiating with respect to ϵ
∂ϵ∂ν=∂ϵ∂(21+96π2ϵϕ4)
Use differentiation rule ∂x∂(f(x)±g(x))=∂x∂(f(x))±∂x∂(g(x))
∂ϵ∂ν=∂ϵ∂(21)+∂ϵ∂(96π2ϵϕ4)
Evaluate
∂ϵ∂ν=0+∂ϵ∂(96π2ϵϕ4)
Evaluate
More Steps

Evaluate
∂ϵ∂(96π2ϵϕ4)
Use differentiation rules
96π21×∂ϵ∂(ϵϕ4)
Calculate the derivative
96π21×ϕ4
∂ϵ∂ν=0+96π21×ϕ4
Solution
∂ϵ∂ν=96π21×ϕ4
Show Solution

Solve the equation
Solve for ϵ
Solve for ν
Solve for ϕ
ϵ=ϕ496π2ν−48π2
Evaluate
ν=21+6(4π)2ϵ×ϕ4
Simplify
More Steps

Evaluate
21+6(4π)2ϵ×ϕ4
Multiply the terms
More Steps

Evaluate
6(4π)2
Evaluate the power
6×16π2
Multiply the numbers
96π2
21+96π2ϵ×ϕ4
Multiply the terms
21+96π2ϵϕ4
ν=21+96π2ϵϕ4
Evaluate
ν=21+6(4π)2ϵ×ϕ4
Simplify
More Steps

Evaluate
21+6(4π)2ϵ×ϕ4
Multiply the terms
More Steps

Evaluate
6(4π)2
Evaluate the power
6×16π2
Multiply the numbers
96π2
21+96π2ϵ×ϕ4
Multiply the terms
21+96π2ϵϕ4
ν=21+96π2ϵϕ4
Rewrite the expression
ν=21+96π2ϕ4ϵ
Swap the sides of the equation
21+96π2ϕ4ϵ=ν
Move the constant to the right-hand side and change its sign
96π2ϕ4ϵ=ν−21
Subtract the terms
More Steps

Evaluate
ν−21
Reduce fractions to a common denominator
2ν×2−21
Write all numerators above the common denominator
2ν×2−1
Use the commutative property to reorder the terms
22ν−1
96π2ϕ4ϵ=22ν−1
Multiply both sides of the equation by 96π2
96π2ϕ4ϵ×96π2=22ν−1×96π2
Multiply the terms
ϕ4ϵ=2(2ν−1)×96π2
Divide the terms
ϕ4ϵ=96νπ2−48π2
Divide both sides
ϕ4ϕ4ϵ=ϕ496νπ2−48π2
Divide the numbers
ϵ=ϕ496νπ2−48π2
Solution
ϵ=ϕ496π2ν−48π2
Show Solution
