Question
Function
Find the first partial derivative with respect to a
Find the first partial derivative with respect to b
∂a∂p=2−b2−b9
Evaluate
p=3a−b2a−b3ab5×b−a
Simplify
More Steps

Evaluate
3a−b2a−b3ab5×b−a
Multiply
More Steps

Multiply the terms
−b3ab5×b
Multiply the terms with the same base by adding their exponents
−b3+5+1a
Add the numbers
−b9a
3a−b2a−b9a−a
Subtract the terms
More Steps

Evaluate
3a−a
Collect like terms by calculating the sum or difference of their coefficients
(3−1)a
Subtract the numbers
2a
2a−b2a−b9a
p=2a−b2a−b9a
Find the first partial derivative by treating the variable b as a constant and differentiating with respect to a
∂a∂p=∂a∂(2a−b2a−b9a)
Use differentiation rule ∂x∂(f(x)±g(x))=∂x∂(f(x))±∂x∂(g(x))
∂a∂p=∂a∂(2a)−∂a∂(b2a)−∂a∂(b9a)
Evaluate
More Steps

Evaluate
∂a∂(2a)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
2×∂a∂(a)
Use ∂x∂xn=nxn−1 to find derivative
2×1
Multiply the terms
2
∂a∂p=2−∂a∂(b2a)−∂a∂(b9a)
Evaluate
More Steps

Evaluate
∂a∂(b2a)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
b2×∂a∂(a)
Use ∂x∂xn=nxn−1 to find derivative
b2×1
Multiply the terms
b2
∂a∂p=2−b2−∂a∂(b9a)
Solution
More Steps

Evaluate
∂a∂(b9a)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
b9×∂a∂(a)
Use ∂x∂xn=nxn−1 to find derivative
b9×1
Multiply the terms
b9
∂a∂p=2−b2−b9
Show Solution

Solve the equation
Solve for a
Solve for p
a=2−b2−b9p
Evaluate
p=3a−b2a−b3ab5×b−a
Simplify
More Steps

Evaluate
3a−b2a−b3ab5×b−a
Multiply
More Steps

Multiply the terms
−b3ab5×b
Multiply the terms with the same base by adding their exponents
−b3+5+1a
Add the numbers
−b9a
3a−b2a−b9a−a
Subtract the terms
More Steps

Evaluate
3a−a
Collect like terms by calculating the sum or difference of their coefficients
(3−1)a
Subtract the numbers
2a
2a−b2a−b9a
p=2a−b2a−b9a
Swap the sides of the equation
2a−b2a−b9a=p
Collect like terms by calculating the sum or difference of their coefficients
(2−b2−b9)a=p
Divide both sides
2−b2−b9(2−b2−b9)a=2−b2−b9p
Solution
a=2−b2−b9p
Show Solution
