Question
Function
Evaluate the derivative
Find the domain
Find the x-intercept/zero
Load more

p′=25sin(x)+66sin(x)cos(2x)
Evaluate
p=sin(x)×2cos(x)×22sin(x)−3cos(x)×1
Simplify
More Steps

Evaluate
sin(x)×2cos(x)×22sin(x)−3cos(x)×1
Multiply
More Steps

Multiply the terms
sin(x)×2cos(x)×22sin(x)
Multiply the terms
sin2(x)cos(x)×2×22
Multiply the terms
sin2(x)cos(x)×44
Use the commutative property to reorder the terms
44sin2(x)cos(x)
44sin2(x)cos(x)−3cos(x)×1
Multiply the terms
44sin2(x)cos(x)−3cos(x)
Transform the expression
(44sin2(x)−3)cos(x)
Transform the expression
More Steps

Evaluate
44sin2(x)−3
Transform the expression
44−44cos2(x)−3
Subtract the numbers
41−44cos2(x)
(41−44cos2(x))cos(x)
Calculate
41cos(x)−44cos3(x)
p=41cos(x)−44cos3(x)
Take the derivative of both sides
p′=dxd(41cos(x)−44cos3(x))
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
p′=dxd(41cos(x))−dxd(44cos3(x))
Calculate
More Steps

Calculate
dxd(41cos(x))
Simplify
41×dxd(cos(x))
Use dxd(cosx)=−sinx to find derivative
41(−sin(x))
Calculate
−41sin(x)
p′=−41sin(x)−dxd(44cos3(x))
Calculate
More Steps

Calculate
dxd(44cos3(x))
Simplify
44×dxd(cos3(x))
Calculate
44(−3cos2(x)sin(x))
Rewrite the expression
−44×3cos2(x)sin(x)
Multiply the terms
−132cos2(x)sin(x)
p′=−41sin(x)−(−132cos2(x)sin(x))
Calculate
p′=−41sin(x)+132cos2(x)sin(x)
Solution
p′=25sin(x)+66sin(x)cos(2x)
Show Solution

Solve the equation
p=41cos(x)−44cos3(x)
Evaluate
p=sin(x)×2cos(x)×22sin(x)−3cos(x)×1
Solution
More Steps

Evaluate
sin(x)×2cos(x)×22sin(x)−3cos(x)×1
Multiply
More Steps

Multiply the terms
sin(x)×2cos(x)×22sin(x)
Multiply the terms
sin2(x)cos(x)×2×22
Multiply the terms
sin2(x)cos(x)×44
Use the commutative property to reorder the terms
44sin2(x)cos(x)
44sin2(x)cos(x)−3cos(x)×1
Multiply the terms
44sin2(x)cos(x)−3cos(x)
Transform the expression
(44sin2(x)−3)cos(x)
Transform the expression
More Steps

Evaluate
44sin2(x)−3
Transform the expression
44−44cos2(x)−3
Subtract the numbers
41−44cos2(x)
(41−44cos2(x))cos(x)
Calculate
41cos(x)−44cos3(x)
p=41cos(x)−44cos3(x)
Show Solution
