Question
Find the roots
p1=1−10,p2=1+10
Alternative Form
p1≈−2.162278,p2≈4.162278
Evaluate
p2−2p−9
To find the roots of the expression,set the expression equal to 0
p2−2p−9=0
Substitute a=1,b=−2 and c=−9 into the quadratic formula p=2a−b±b2−4ac
p=22±(−2)2−4(−9)
Simplify the expression
More Steps

Evaluate
(−2)2−4(−9)
Multiply the numbers
More Steps

Evaluate
4(−9)
Multiplying or dividing an odd number of negative terms equals a negative
−4×9
Multiply the numbers
−36
(−2)2−(−36)
Rewrite the expression
22−(−36)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+36
Evaluate the power
4+36
Add the numbers
40
p=22±40
Simplify the radical expression
More Steps

Evaluate
40
Write the expression as a product where the root of one of the factors can be evaluated
4×10
Write the number in exponential form with the base of 2
22×10
The root of a product is equal to the product of the roots of each factor
22×10
Reduce the index of the radical and exponent with 2
210
p=22±210
Separate the equation into 2 possible cases
p=22+210p=22−210
Simplify the expression
More Steps

Evaluate
p=22+210
Divide the terms
More Steps

Evaluate
22+210
Rewrite the expression
22(1+10)
Reduce the fraction
1+10
p=1+10
p=1+10p=22−210
Simplify the expression
More Steps

Evaluate
p=22−210
Divide the terms
More Steps

Evaluate
22−210
Rewrite the expression
22(1−10)
Reduce the fraction
1−10
p=1−10
p=1+10p=1−10
Solution
p1=1−10,p2=1+10
Alternative Form
p1≈−2.162278,p2≈4.162278
Show Solution
