Question
Simplify the expression
465552000p15
Evaluate
p2×10p2×60p2×80p3×3p3×61p3×53
Multiply the terms with the same base by adding their exponents
p2+2+2+3+3+3×10×60×80×3×61×53
Add the numbers
p15×10×60×80×3×61×53
Multiply the terms
More Steps

Evaluate
10×60×80×3×61×53
Multiply the terms
600×80×3×61×53
Multiply the terms
48000×3×61×53
Multiply the terms
144000×61×53
Multiply the terms
8784000×53
Multiply the numbers
465552000
p15×465552000
Solution
465552000p15
Show Solution

Find the roots
p=0
Evaluate
p2×10p2×60p2×80p3×3p3×61p3×53
To find the roots of the expression,set the expression equal to 0
p2×10p2×60p2×80p3×3p3×61p3×53=0
Multiply
More Steps

Multiply the terms
p2×10p2×60p2×80p3×3p3×61p3×53
Multiply the terms with the same base by adding their exponents
p2+2+2+3+3+3×10×60×80×3×61×53
Add the numbers
p15×10×60×80×3×61×53
Multiply the terms
More Steps

Evaluate
10×60×80×3×61×53
Multiply the terms
600×80×3×61×53
Multiply the terms
48000×3×61×53
Multiply the terms
144000×61×53
Multiply the terms
8784000×53
Multiply the numbers
465552000
p15×465552000
Use the commutative property to reorder the terms
465552000p15
465552000p15=0
Rewrite the expression
p15=0
Solution
p=0
Show Solution
