Question
Simplify the expression
502526508120000p9
Evaluate
p2×302p×403p×406p×113p×1×p2×300p×300
Rewrite the expression in exponential form
p2×302p5×403×406×113×1×p2×300×300
Rewrite the expression
p2×302p5×403×406×113p2×300×300
Multiply the terms with the same base by adding their exponents
p2+5+2×302×403×406×113×300×300
Add the numbers
p9×302×403×406×113×300×300
Multiply the terms
More Steps

Evaluate
302×403×406×113×300×300
Multiply the terms
121706×406×113×300×300
Multiply the terms
49412636×113×300×300
Multiply the terms
5583627868×300×300
Multiply the terms
1675088360400×300
Multiply the numbers
502526508120000
p9×502526508120000
Solution
502526508120000p9
Show Solution

Find the roots
p=0
Evaluate
p2×302p×403p×406p×113p×1×p2×300p×300
To find the roots of the expression,set the expression equal to 0
p2×302p×403p×406p×113p×1×p2×300p×300=0
Multiply the terms
More Steps

Multiply the terms
p2×302p×403p×406p×113p×1×p2×300p×300
Rewrite the expression
p2×302p×403p×406p×113p×p2×300p×300
Multiply the terms with the same base by adding their exponents
p2+1+1+1+1+2+1×302×403×406×113×300×300
Add the numbers
p9×302×403×406×113×300×300
Multiply the terms
More Steps

Evaluate
302×403×406×113×300×300
Multiply the terms
121706×406×113×300×300
Multiply the terms
49412636×113×300×300
Multiply the terms
5583627868×300×300
Multiply the terms
1675088360400×300
Multiply the numbers
502526508120000
p9×502526508120000
Use the commutative property to reorder the terms
502526508120000p9
502526508120000p9=0
Rewrite the expression
p9=0
Solution
p=0
Show Solution
