Question
Simplify the expression
7752000p17
Evaluate
p2×80p3×1×p3×10p3×5p3×51p3×38
Rewrite the expression
p2×80p3×p3×10p3×5p3×51p3×38
Multiply the terms with the same base by adding their exponents
p2+3+3+3+3+3×80×10×5×51×38
Add the numbers
p17×80×10×5×51×38
Multiply the terms
More Steps

Evaluate
80×10×5×51×38
Multiply the terms
800×5×51×38
Multiply the terms
4000×51×38
Multiply the terms
204000×38
Multiply the numbers
7752000
p17×7752000
Solution
7752000p17
Show Solution

Find the roots
p=0
Evaluate
p2×80p3×1×p3×10p3×5p3×51p3×38
To find the roots of the expression,set the expression equal to 0
p2×80p3×1×p3×10p3×5p3×51p3×38=0
Multiply the terms
More Steps

Multiply the terms
p2×80p3×1×p3×10p3×5p3×51p3×38
Rewrite the expression
p2×80p3×p3×10p3×5p3×51p3×38
Multiply the terms with the same base by adding their exponents
p2+3+3+3+3+3×80×10×5×51×38
Add the numbers
p17×80×10×5×51×38
Multiply the terms
More Steps

Evaluate
80×10×5×51×38
Multiply the terms
800×5×51×38
Multiply the terms
4000×51×38
Multiply the terms
204000×38
Multiply the numbers
7752000
p17×7752000
Use the commutative property to reorder the terms
7752000p17
7752000p17=0
Rewrite the expression
p17=0
Solution
p=0
Show Solution
