Question
Simplify the expression
50p4−110978
Evaluate
p4×50−5258−105720
Use the commutative property to reorder the terms
50p4−5258−105720
Solution
50p4−110978
Show Solution

Factor the expression
2(25p4−55489)
Evaluate
p4×50−5258−105720
Use the commutative property to reorder the terms
50p4−5258−105720
Subtract the numbers
50p4−110978
Solution
2(25p4−55489)
Show Solution

Find the roots
p1=−541387225,p2=541387225
Alternative Form
p1≈−6.863833,p2≈6.863833
Evaluate
p4×50−5258−105720
To find the roots of the expression,set the expression equal to 0
p4×50−5258−105720=0
Use the commutative property to reorder the terms
50p4−5258−105720=0
Subtract the numbers
50p4−110978=0
Move the constant to the right-hand side and change its sign
50p4=0+110978
Removing 0 doesn't change the value,so remove it from the expression
50p4=110978
Divide both sides
5050p4=50110978
Divide the numbers
p4=50110978
Cancel out the common factor 2
p4=2555489
Take the root of both sides of the equation and remember to use both positive and negative roots
p=±42555489
Simplify the expression
More Steps

Evaluate
42555489
To take a root of a fraction,take the root of the numerator and denominator separately
425455489
Simplify the radical expression
More Steps

Evaluate
425
Write the number in exponential form with the base of 5
452
Reduce the index of the radical and exponent with 2
5
5455489
Multiply by the Conjugate
5×5455489×5
Multiply the numbers
More Steps

Evaluate
455489×5
Use na=mnam to expand the expression
455489×452
The product of roots with the same index is equal to the root of the product
455489×52
Calculate the product
41387225
5×541387225
When a square root of an expression is multiplied by itself,the result is that expression
541387225
p=±541387225
Separate the equation into 2 possible cases
p=541387225p=−541387225
Solution
p1=−541387225,p2=541387225
Alternative Form
p1≈−6.863833,p2≈6.863833
Show Solution
