Question  
 Simplify the expression
4p5−6262
Evaluate
p5×4−6162−100
Use the commutative property to reorder the terms
4p5−6162−100
Solution
4p5−6262
        Show Solution
        
Factor the expression
2(2p5−3131)
Evaluate
p5×4−6162−100
Use the commutative property to reorder the terms
4p5−6162−100
Subtract the numbers
4p5−6262
Solution
2(2p5−3131)
        Show Solution
        
Find the roots
p=2550096
Alternative Form
 p≈4.354423
Evaluate
p5×4−6162−100
To find the roots of the expression,set the expression equal to 0
p5×4−6162−100=0
Use the commutative property to reorder the terms
4p5−6162−100=0
Subtract the numbers
4p5−6262=0
Move the constant to the right-hand side and change its sign
4p5=0+6262
Removing 0 doesn't change the value,so remove it from the expression
4p5=6262
Divide both sides
44p5=46262
Divide the numbers
p5=46262
Cancel out the common factor 2
p5=23131
Take the 5-th root on both sides of the equation
5p5=523131
Calculate
p=523131
Solution
        More Steps
        
Evaluate
523131
To take a root of a fraction,take the root of the numerator and denominator separately
5253131
Multiply by the Conjugate
52×52453131×524
Simplify
52×52453131×516
Multiply the numbers
        More Steps
        
Evaluate
53131×516
The product of roots with the same index is equal to the root of the product
53131×16
Calculate the product
550096
52×524550096
Multiply the numbers
        More Steps
        
Evaluate
52×524
The product of roots with the same index is equal to the root of the product
52×24
Calculate the product
525
Reduce the index of the radical and exponent with 5
2
2550096
p=2550096
Alternative Form
p≈4.354423
        Show Solution
        