Question Simplify the expression 13534560Alternative Form 1.353456×107 Evaluate p6×p68676×1560Multiply the terms More Steps Multiply the terms p6×p68676Cancel out the common factor p6 1×8676Multiply the terms 8676 8676×1560Solution 13534560Alternative Form 1.353456×107 Show Solution Find the excluded values p=0 Evaluate p6×p68676×1560To find the excluded values,set the denominators equal to 0 p6=0Solution p=0 Show Solution Find the roots p∈∅ Evaluate p6×p68676×1560To find the roots of the expression,set the expression equal to 0 p6×p68676×1560=0The only way a power can not be 0 is when the base not equals 0 p6×p68676×1560=0,p=0Calculate p6×p68676×1560=0Multiply the terms More Steps Multiply the terms p6×p68676×1560Multiply the terms More Steps Multiply the terms p6×p68676Cancel out the common factor p6 1×8676Multiply the terms 8676 8676×1560Multiply the numbers 13534560 13534560=0Calculate 1.353456×107=0Solution p∈∅ Show Solution