Question
Simplify the expression
pheh2p−1=0
Evaluate
p(h∣e=pehph÷pe∣)
Remove the parentheses
ph∣e=pehph÷pe∣
Multiply
More Steps

Multiply the terms
pehph
Multiply the terms
p2eh×h
Multiply the terms
p2eh2
Use the commutative property to reorder the terms
ep2h2
phe=ep2h2÷pe
Divide the terms
More Steps

Evaluate
ep2h2÷p
Rewrite the expression
pep2h2
Use the product rule aman=an−m to simplify the expression
1ep2−1h2
Simplify
ep2−1h2
Divide the terms
eph2
phe=eph2e
Multiply the numbers
More Steps

Evaluate
e×e
Multiply the terms with the same base by adding their exponents
e1+1
Add the numbers
e2
phe=e2ph2
Solution
More Steps

Calculate
e=e2ph2
Swap the sides of the equation
e2ph2=e
Move the expression to the left side
e2ph2−e=0
Factor the expression
e(eh2p−1)=0
Divide both sides
eh2p−1=0
pheh2p−1=0
Show Solution

Find the excluded values
p=0
Evaluate
p(h∣e=p(eh)ph÷pe∣)
Solution
p=0
Show Solution
