Question
Solve the equation
p=21+1+4q3−4q2p=21−1+4q3−4q2
Evaluate
p(p−1)=q(q−1)(q×1)
Remove the parentheses
p(p−1)=q(q−1)q×1
Multiply the terms
More Steps

Evaluate
q(q−1)q×1
Rewrite the expression
q(q−1)q
Multiply the terms
q2(q−1)
p(p−1)=q2(q−1)
Rewrite the expression
p(p−1)=q3−q2
Expand the expression
More Steps

Evaluate
p(p−1)
Apply the distributive property
p×p−p×1
Multiply the terms
p2−p×1
Any expression multiplied by 1 remains the same
p2−p
p2−p=q3−q2
Move the expression to the left side
p2−p−(q3−q2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
p2−p−q3+q2=0
Substitute a=1,b=−1 and c=−q3+q2 into the quadratic formula p=2a−b±b2−4ac
p=21±(−1)2−4(−q3+q2)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−q3+q2)
Evaluate the power
1−4(−q3+q2)
Apply the distributive property
1−(−4q3+4q2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4q3−4q2
p=21±1+4q3−4q2
Solution
p=21+1+4q3−4q2p=21−1+4q3−4q2
Show Solution
