Question
Function
p′(x)=kxk−1
Evaluate
p(x)=k×kxk
Simplify
More Steps

Evaluate
k×kxk
Cancel out the common factor k
1×xk
Multiply the terms
xk
p(x)=xk
Take the derivative of both sides
p′(x)=dxd(xk)
Rewrite the expression
p′(x)=dxd(eln(xk))
Calculate
p′(x)=dxd(ekln(x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=kln(x), to find the derivative
p′(x)=dgd(eg)×dxd(kln(x))
Use dxdex=ex to find derivative
p′(x)=eg×dxd(kln(x))
Calculate
More Steps

Calculate
dxd(kln(x))
Simplify
k×dxd(ln(x))
Use dxdlnx=x1 to find derivative
k×x1
Multiply the terms
xk
p′(x)=eg×xk
Substitute back
p′(x)=ekln(x)×xk
Calculate
More Steps

Calculate
ekln(x)
Transform the expression
(eln(x))k
Transform the expression
xk
p′(x)=xk×xk
Solution
More Steps

Multiply the terms
xk×xk
Cancel out the common factor x
xk−1k
Multiply the terms
kxk−1
p′(x)=kxk−1
Show Solution
