Question
Function
p′(x)=p−v
Evaluate
p(x)=(p−v)x−f
Simplify
More Steps

Evaluate
(p−v)x−f
Multiply the terms
x(p−v)−f
Expand the expression
xp−xv−f
p(x)=xp−xv−f
Evaluate
p(x)=px−vx−f
Take the derivative of both sides
p′(x)=dxd(px−vx−f)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
p′(x)=dxd(px)+dxd(−vx)+dxd(−f)
Calculate
More Steps

Calculate
dxd(px)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
p×dxd(x)
Use dxdxn=nxn−1 to find derivative
p×1
Any expression multiplied by 1 remains the same
p
p′(x)=p+dxd(−vx)+dxd(−f)
Calculate
More Steps

Calculate
dxd(−vx)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−v×dxd(x)
Use dxdxn=nxn−1 to find derivative
−v×1
Any expression multiplied by 1 remains the same
−v
p′(x)=p−v+dxd(−f)
Use dxd(c)=0 to find derivative
p′(x)=p−v+0
Solution
p′(x)=p−v
Show Solution
