Question Function p′(x)=2mnx Evaluate p(x)=mxnxSimplify p(x)=mx2nEvaluate p(x)=mnx2Take the derivative of both sides p′(x)=dxd(mnx2)Use differentiation rule dxd(cf(x))=c×dxd(f(x)) p′(x)=mn×dxd(x2)Use dxdxn=nxn−1 to find derivative p′(x)=mn×2xSolution p′(x)=2mnx Show Solution