Question
Simplify the expression
20p2x−p2x2−91p2
Evaluate
p(x−7)p(13−x)
Multiply the terms
p2(x−7)(13−x)
Multiply the terms
More Steps

Evaluate
p2(x−7)
Apply the distributive property
p2x−p2×7
Use the commutative property to reorder the terms
p2x−7p2
(p2x−7p2)(13−x)
Apply the distributive property
p2x×13−p2x×x−7p2×13−(−7p2x)
Use the commutative property to reorder the terms
13p2x−p2x×x−7p2×13−(−7p2x)
Multiply the terms
13p2x−p2x2−7p2×13−(−7p2x)
Multiply the numbers
13p2x−p2x2−91p2−(−7p2x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
13p2x−p2x2−91p2+7p2x
Solution
More Steps

Evaluate
13p2x+7p2x
Collect like terms by calculating the sum or difference of their coefficients
(13+7)p2x
Add the numbers
20p2x
20p2x−p2x2−91p2
Show Solution
