Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
q1=6−53,q2=6+53
Alternative Form
q1≈−1.28011,q2≈13.28011
Evaluate
q2−12q−17=0
Substitute a=1,b=−12 and c=−17 into the quadratic formula q=2a−b±b2−4ac
q=212±(−12)2−4(−17)
Simplify the expression
More Steps

Evaluate
(−12)2−4(−17)
Multiply the numbers
More Steps

Evaluate
4(−17)
Multiplying or dividing an odd number of negative terms equals a negative
−4×17
Multiply the numbers
−68
(−12)2−(−68)
Rewrite the expression
122−(−68)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+68
Evaluate the power
144+68
Add the numbers
212
q=212±212
Simplify the radical expression
More Steps

Evaluate
212
Write the expression as a product where the root of one of the factors can be evaluated
4×53
Write the number in exponential form with the base of 2
22×53
The root of a product is equal to the product of the roots of each factor
22×53
Reduce the index of the radical and exponent with 2
253
q=212±253
Separate the equation into 2 possible cases
q=212+253q=212−253
Simplify the expression
More Steps

Evaluate
q=212+253
Divide the terms
More Steps

Evaluate
212+253
Rewrite the expression
22(6+53)
Reduce the fraction
6+53
q=6+53
q=6+53q=212−253
Simplify the expression
More Steps

Evaluate
q=212−253
Divide the terms
More Steps

Evaluate
212−253
Rewrite the expression
22(6−53)
Reduce the fraction
6−53
q=6−53
q=6+53q=6−53
Solution
q1=6−53,q2=6+53
Alternative Form
q1≈−1.28011,q2≈13.28011
Show Solution
