Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
q1=14−233,q2=14+233
Alternative Form
q1≈−1.264338,q2≈29.264338
Evaluate
q2−28q−37=0
Substitute a=1,b=−28 and c=−37 into the quadratic formula q=2a−b±b2−4ac
q=228±(−28)2−4(−37)
Simplify the expression
More Steps

Evaluate
(−28)2−4(−37)
Multiply the numbers
More Steps

Evaluate
4(−37)
Multiplying or dividing an odd number of negative terms equals a negative
−4×37
Multiply the numbers
−148
(−28)2−(−148)
Rewrite the expression
282−(−148)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
282+148
Evaluate the power
784+148
Add the numbers
932
q=228±932
Simplify the radical expression
More Steps

Evaluate
932
Write the expression as a product where the root of one of the factors can be evaluated
4×233
Write the number in exponential form with the base of 2
22×233
The root of a product is equal to the product of the roots of each factor
22×233
Reduce the index of the radical and exponent with 2
2233
q=228±2233
Separate the equation into 2 possible cases
q=228+2233q=228−2233
Simplify the expression
More Steps

Evaluate
q=228+2233
Divide the terms
More Steps

Evaluate
228+2233
Rewrite the expression
22(14+233)
Reduce the fraction
14+233
q=14+233
q=14+233q=228−2233
Simplify the expression
More Steps

Evaluate
q=228−2233
Divide the terms
More Steps

Evaluate
228−2233
Rewrite the expression
22(14−233)
Reduce the fraction
14−233
q=14−233
q=14+233q=14−233
Solution
q1=14−233,q2=14+233
Alternative Form
q1≈−1.264338,q2≈29.264338
Show Solution
