Question
Simplify the expression
2eq2−1301e
Evaluate
q2×2e−e×1301
Multiply the terms
More Steps

Multiply the terms
q2×2e
Use the commutative property to reorder the terms
2q2e
Multiply the numbers
2eq2
2eq2−e×1301
Solution
2eq2−1301e
Show Solution

Factor the expression
e(2q2−1301)
Evaluate
q2×2e−e×1301
Multiply the terms
More Steps

Multiply the terms
q2×2e
Use the commutative property to reorder the terms
2q2e
Multiply the numbers
2eq2
2eq2−e×1301
Use the commutative property to reorder the terms
2eq2−1301e
Solution
e(2q2−1301)
Show Solution

Find the roots
q1=−22602,q2=22602
Alternative Form
q1≈−25.504901,q2≈25.504901
Evaluate
q2×2e−e×1301
To find the roots of the expression,set the expression equal to 0
q2×2e−e×1301=0
Multiply the terms
More Steps

Multiply the terms
q2×2e
Use the commutative property to reorder the terms
2q2e
Multiply the numbers
2eq2
2eq2−e×1301=0
Use the commutative property to reorder the terms
2eq2−1301e=0
Move the constant to the right-hand side and change its sign
2eq2=0+1301e
Add the terms
2eq2=1301e
Divide both sides
2e2eq2=2e1301e
Divide the numbers
q2=2e1301e
Divide the numbers
q2=21301
Take the root of both sides of the equation and remember to use both positive and negative roots
q=±21301
Simplify the expression
More Steps

Evaluate
21301
To take a root of a fraction,take the root of the numerator and denominator separately
21301
Multiply by the Conjugate
2×21301×2
Multiply the numbers
More Steps

Evaluate
1301×2
The product of roots with the same index is equal to the root of the product
1301×2
Calculate the product
2602
2×22602
When a square root of an expression is multiplied by itself,the result is that expression
22602
q=±22602
Separate the equation into 2 possible cases
q=22602q=−22602
Solution
q1=−22602,q2=22602
Alternative Form
q1≈−25.504901,q2≈25.504901
Show Solution
