Question
Solve the equation
Solve for h
Solve for m
Solve for q
Load more

h=2mm+m2+4qm−4wmh=2mm−m2+4qm−4wm
Evaluate
q−w=m(h2−h×1)
Any expression multiplied by 1 remains the same
q−w=m(h2−h)
Swap the sides of the equation
m(h2−h)=q−w
Divide both sides
mm(h2−h)=mq−w
Divide the numbers
h2−h=mq−w
Move the expression to the left side
h2−h−mq−w=0
Calculate
h2−h+m−q+w=0
Multiply both sides of the equation by LCD
(h2−h+m−q+w)m=0×m
Simplify the equation
More Steps

Evaluate
(h2−h+m−q+w)m
Apply the distributive property
h2m−hm+m−q+w×m
Simplify
h2m−hm−q+w
Multiply the terms
mh2−hm−q+w
Multiply the terms
mh2−mh−q+w
mh2−mh−q+w=0×m
Any expression multiplied by 0 equals 0
mh2−mh−q+w=0
Substitute a=m,b=−m and c=−q+w into the quadratic formula h=2a−b±b2−4ac
h=2mm±(−m)2−4m(−q+w)
Simplify the expression
More Steps

Evaluate
(−m)2−4m(−q+w)
Multiply the numbers
More Steps

Multiply the terms
4m(−q+w)
Multiply the terms
(−4q+4w)m
Apply the distributive property
−4qm+4wm
(−m)2−(−4qm+4wm)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−m)2+4qm−4wm
Evaluate the power
m2+4qm−4wm
h=2mm±m2+4qm−4wm
Solution
h=2mm+m2+4qm−4wmh=2mm−m2+4qm−4wm
Show Solution
