Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
r1=215−413,r2=215+413
Alternative Form
r1≈−2.661201,r2≈17.661201
Evaluate
r(r−15)=47
Expand the expression
More Steps

Evaluate
r(r−15)
Apply the distributive property
r×r−r×15
Multiply the terms
r2−r×15
Use the commutative property to reorder the terms
r2−15r
r2−15r=47
Move the expression to the left side
r2−15r−47=0
Substitute a=1,b=−15 and c=−47 into the quadratic formula r=2a−b±b2−4ac
r=215±(−15)2−4(−47)
Simplify the expression
More Steps

Evaluate
(−15)2−4(−47)
Multiply the numbers
More Steps

Evaluate
4(−47)
Multiplying or dividing an odd number of negative terms equals a negative
−4×47
Multiply the numbers
−188
(−15)2−(−188)
Rewrite the expression
152−(−188)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+188
Evaluate the power
225+188
Add the numbers
413
r=215±413
Separate the equation into 2 possible cases
r=215+413r=215−413
Solution
r1=215−413,r2=215+413
Alternative Form
r1≈−2.661201,r2≈17.661201
Show Solution

Rewrite the equation
319x2+319y2=x4+y4+2209+2x2y2
Evaluate
r(r−15)=47
Simplify the expression
r2−15r=47
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
x2+y2−15r=47
Simplify the expression
−15r=−x2−y2+47
Square both sides of the equation
(−15r)2=(−x2−y2+47)2
Evaluate
225r2=(−x2−y2+47)2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
225(x2+y2)=(−x2−y2+47)2
Calculate
225x2+225y2=x4+y4+2209+2x2y2−94x2−94y2
Move the expression to the left side
225x2+225y2−(−94x2−94y2)=x4+y4+2209+2x2y2
Calculate
More Steps

Evaluate
225x2+94x2
Collect like terms by calculating the sum or difference of their coefficients
(225+94)x2
Add the numbers
319x2
319x2+225y2=x4+y4+2209+2x2y2−94y2
Solution
More Steps

Evaluate
225y2+94y2
Collect like terms by calculating the sum or difference of their coefficients
(225+94)y2
Add the numbers
319y2
319x2+319y2=x4+y4+2209+2x2y2
Show Solution
