Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(21,25)
Evaluate
r=100(g×1−g2)
Any expression multiplied by 1 remains the same
r=100(g−g2)
Write the quadratic function in standard form
r=−100g2+100g
Find the g-coordinate of the vertex by substituting a=−100 and b=100 into g = −2ab
g=−2(−100)100
Solve the equation for g
g=21
Find the y-coordinate of the vertex by evaluating the function for g=21
r=−100(21)2+100×21
Calculate
More Steps

Evaluate
−100(21)2+100×21
Multiply the terms
More Steps

Evaluate
−100(21)2
Evaluate the power
−100×41
Multiply the numbers
−25
−25+100×21
Multiply the numbers
More Steps

Evaluate
100×21
Reduce the numbers
50×1
Simplify
50
−25+50
Add the numbers
25
r=25
Solution
(21,25)
Show Solution

Solve the equation
Solve for g
Solve for r
g=105+25−rg=105−25−r
Evaluate
r=100(g×1−g2)
Any expression multiplied by 1 remains the same
r=100(g−g2)
Swap the sides of the equation
100(g−g2)=r
Divide both sides
100100(g−g2)=100r
Divide the numbers
g−g2=100r
Move the expression to the left side
g−g2−100r=0
Multiply both sides of the equation by LCD
(g−g2−100r)×100=0×100
Simplify the equation
More Steps

Evaluate
(g−g2−100r)×100
Apply the distributive property
g×100−g2×100−100r×100
Simplify
g×100−g2×100−r
Use the commutative property to reorder the terms
100g−g2×100−r
Use the commutative property to reorder the terms
100g−100g2−r
100g−100g2−r=0×100
Any expression multiplied by 0 equals 0
100g−100g2−r=0
Rewrite in standard form
−100g2+100g−r=0
Multiply both sides
100g2−100g+r=0
Substitute a=100,b=−100 and c=r into the quadratic formula g=2a−b±b2−4ac
g=2×100100±(−100)2−4×100r
Simplify the expression
g=200100±(−100)2−4×100r
Simplify the expression
More Steps

Evaluate
(−100)2−4×100r
Multiply the terms
(−100)2−400r
Rewrite the expression
1002−400r
Evaluate the power
10000−400r
g=200100±10000−400r
Simplify the radical expression
More Steps

Evaluate
10000−400r
Factor the expression
400(25−r)
The root of a product is equal to the product of the roots of each factor
400×25−r
Evaluate the root
More Steps

Evaluate
400
Write the number in exponential form with the base of 20
202
Reduce the index of the radical and exponent with 2
20
2025−r
g=200100±2025−r
Separate the equation into 2 possible cases
g=200100+2025−rg=200100−2025−r
Simplify the expression
More Steps

Evaluate
g=200100+2025−r
Divide the terms
More Steps

Evaluate
200100+2025−r
Rewrite the expression
20020(5+25−r)
Cancel out the common factor 20
105+25−r
g=105+25−r
g=105+25−rg=200100−2025−r
Solution
More Steps

Evaluate
g=200100−2025−r
Divide the terms
More Steps

Evaluate
200100−2025−r
Rewrite the expression
20020(5−25−r)
Cancel out the common factor 20
105−25−r
g=105−25−r
g=105+25−rg=105−25−r
Show Solution
