Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
r1=2−102,r2=2+102
Alternative Form
r1≈−8.099505,r2≈12.099505
Evaluate
r2−4r−91=7
Move the expression to the left side
r2−4r−98=0
Substitute a=1,b=−4 and c=−98 into the quadratic formula r=2a−b±b2−4ac
r=24±(−4)2−4(−98)
Simplify the expression
More Steps

Evaluate
(−4)2−4(−98)
Multiply the numbers
More Steps

Evaluate
4(−98)
Multiplying or dividing an odd number of negative terms equals a negative
−4×98
Multiply the numbers
−392
(−4)2−(−392)
Rewrite the expression
42−(−392)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+392
Evaluate the power
16+392
Add the numbers
408
r=24±408
Simplify the radical expression
More Steps

Evaluate
408
Write the expression as a product where the root of one of the factors can be evaluated
4×102
Write the number in exponential form with the base of 2
22×102
The root of a product is equal to the product of the roots of each factor
22×102
Reduce the index of the radical and exponent with 2
2102
r=24±2102
Separate the equation into 2 possible cases
r=24+2102r=24−2102
Simplify the expression
More Steps

Evaluate
r=24+2102
Divide the terms
More Steps

Evaluate
24+2102
Rewrite the expression
22(2+102)
Reduce the fraction
2+102
r=2+102
r=2+102r=24−2102
Simplify the expression
More Steps

Evaluate
r=24−2102
Divide the terms
More Steps

Evaluate
24−2102
Rewrite the expression
22(2−102)
Reduce the fraction
2−102
r=2−102
r=2+102r=2−102
Solution
r1=2−102,r2=2+102
Alternative Form
r1≈−8.099505,r2≈12.099505
Show Solution

Rewrite the equation
212x2+212y2=x4+y4+9604+2x2y2
Evaluate
r2−4r−91=7
Rewrite the expression
r2−4r=91+7
Simplify the expression
r2−4r=98
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
x2+y2−4r=98
Simplify the expression
−4r=−x2−y2+98
Square both sides of the equation
(−4r)2=(−x2−y2+98)2
Evaluate
16r2=(−x2−y2+98)2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
16(x2+y2)=(−x2−y2+98)2
Calculate
16x2+16y2=x4+y4+9604+2x2y2−196x2−196y2
Move the expression to the left side
16x2+16y2−(−196x2−196y2)=x4+y4+9604+2x2y2
Calculate
More Steps

Evaluate
16x2+196x2
Collect like terms by calculating the sum or difference of their coefficients
(16+196)x2
Add the numbers
212x2
212x2+16y2=x4+y4+9604+2x2y2−196y2
Solution
More Steps

Evaluate
16y2+196y2
Collect like terms by calculating the sum or difference of their coefficients
(16+196)y2
Add the numbers
212y2
212x2+212y2=x4+y4+9604+2x2y2
Show Solution
