Question  
 Simplify the expression
22r6−16
Evaluate
r6×22−16
Solution
22r6−16
        Show Solution
        
Factor the expression
2(11r6−8)
Evaluate
r6×22−16
Use the commutative property to reorder the terms
22r6−16
Solution
2(11r6−8)
        Show Solution
        
Find the roots
r1=−1168×115,r2=1168×115
Alternative Form
 r1≈−0.948308,r2≈0.948308
Evaluate
r6×22−16
To find the roots of the expression,set the expression equal to 0
r6×22−16=0
Use the commutative property to reorder the terms
22r6−16=0
Move the constant to the right-hand side and change its sign
22r6=0+16
Removing 0 doesn't change the value,so remove it from the expression
22r6=16
Divide both sides
2222r6=2216
Divide the numbers
r6=2216
Cancel out the common factor 2
r6=118
Take the root of both sides of the equation and remember to use both positive and negative roots
r=±6118
Simplify the expression
        More Steps
        
Evaluate
6118
To take a root of a fraction,take the root of the numerator and denominator separately
61168
Simplify the radical expression
        More Steps
        
Evaluate
68
Write the number in exponential form with the base of 2
623
Reduce the index of the radical and exponent with 3
2
6112
Multiply by the Conjugate
611×61152×6115
Multiply the numbers
        More Steps
        
Evaluate
2×6115
Use na=mnam to expand the expression
623×6115
The product of roots with the same index is equal to the root of the product
623×115
Calculate the product
68×115
611×611568×115
Multiply the numbers
        More Steps
        
Evaluate
611×6115
The product of roots with the same index is equal to the root of the product
611×115
Calculate the product
6116
Reduce the index of the radical and exponent with 6
11
1168×115
r=±1168×115
Separate the equation into 2 possible cases
r=1168×115r=−1168×115
Solution
r1=−1168×115,r2=1168×115
Alternative Form
r1≈−0.948308,r2≈0.948308
        Show Solution
        