Question
Simplify the expression
−jnar2i
Evaluate
r3jinar×1
Dividing by an is the same as multiplying by a−n
jinar×r−3
Multiply the terms
More Steps

Evaluate
r×r−3
Use the product rule an×am=an+m to simplify the expression
r1−3
Subtract the numbers
r−2
jinar−2
Use the commutative property to reorder the terms
ijnar−2
Divide the terms
More Steps

Evaluate
i1
Multiply by the Conjugate
i×ii
Calculate
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−1i
Calculate
−i
jna−ir−2
Rewrite the expression
More Steps

Evaluate
−ir−2
Express with a positive exponent using a−n=an1
−i×r21
Rewrite the expression
r2−i
Use b−a=−ba=−ba to rewrite the fraction
−r2i
jna−r2i
Use b−a=−ba=−ba to rewrite the fraction
−jnar2i
Solution
−jnar2i
Show Solution

Find the excluded values
r=0,j=0,n=0,a=0
Evaluate
r3jinar×1
To find the excluded values,set the denominators equal to 0
r3jna=0
Separate the equation into 4 possible cases
r3=0j=0n=0a=0
The only way a power can be 0 is when the base equals 0
r=0j=0n=0a=0
Solution
r=0,j=0,n=0,a=0
Show Solution
