Question Simplify the expression 15xx−3x Evaluate x×(15x−3)Multiply each term in the parentheses by x x×15x+x×(−3)Calculate the product 15xx+x×(−3)Solution 15xx−3x Show Solution Factor the expression 3x×(5x−1) Evaluate x×(15x−3)Multiply each term in the parentheses by x x×15x+x×(−3)Calculate the product 15xx+x×(−3)Calculate the product 15xx−3xRewrite the expression 3x×5x−3xSolution 3x×(5x−1) Show Solution Find the roots x1=0,x2=51Alternative Form x1=0,x2=0.2 Evaluate x×(15x−3)To find the roots of the expression,set the expression equal to 0 x×(15x−3)=0Find the domain x×(15x−3)=0,x≥0Calculate x×(15x−3)=0Separate the equation into 2 possible cases x=015x−3=0The only way a root could be 0 is when the radicand equals 0 x=015x−3=0Solve the equation More Steps Evaluate 15x−3=0Move the constant to the right-hand side and change its sign 15x=0+3Removing 0 doesn't change the value,so remove it from the expression 15x=3Divide both sides 1515x=153Divide the numbers x=153Cancel out the common factor 3 x=51 x=0x=51Check if the solution is in the defined range x=0x=51,x≥0Find the intersection of the solution and the defined range x=0x=51Solution x1=0,x2=51Alternative Form x1=0,x2=0.2 Show Solution