Question
Function
Evaluate the derivative
Find the domain
Find the y-intercept
Load more

s′=5a4−16a3−2a+10
Evaluate
s=a4(a−4)−(a−5)(a−5)
Simplify
More Steps

Evaluate
a4(a−4)−(a−5)(a−5)
Multiply the terms
a4(a−4)−(a−5)2
Expand the expression
More Steps

Calculate
a4(a−4)
Apply the distributive property
a4×a−a4×4
Multiply the terms
a5−a4×4
Use the commutative property to reorder the terms
a5−4a4
a5−4a4−(a−5)2
Expand the expression
a5−4a4−a2+10a−25
s=a5−4a4−a2+10a−25
Take the derivative of both sides
s′=dad(a5−4a4−a2+10a−25)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
s′=dad(a5)−dad(4a4)−dad(a2)+dad(10a)−dad(25)
Use dxdxn=nxn−1 to find derivative
s′=5a4−dad(4a4)−dad(a2)+dad(10a)−dad(25)
Calculate
More Steps

Calculate
dad(4a4)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dad(a4)
Use dxdxn=nxn−1 to find derivative
4×4a3
Multiply the terms
16a3
s′=5a4−16a3−dad(a2)+dad(10a)−dad(25)
Use dxdxn=nxn−1 to find derivative
s′=5a4−16a3−2a+dad(10a)−dad(25)
Calculate
More Steps

Calculate
dad(10a)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
10×dad(a)
Use dxdxn=nxn−1 to find derivative
10×1
Any expression multiplied by 1 remains the same
10
s′=5a4−16a3−2a+10−dad(25)
Use dxd(c)=0 to find derivative
s′=5a4−16a3−2a+10−0
Solution
s′=5a4−16a3−2a+10
Show Solution

Solve the equation
s=a5−4a4−a2+10a−25
Evaluate
s=a4(a−4)−(a−5)(a−5)
Solution
More Steps

Evaluate
a4(a−4)−(a−5)(a−5)
Multiply the terms
a4(a−4)−(a−5)2
Expand the expression
More Steps

Calculate
a4(a−4)
Apply the distributive property
a4×a−a4×4
Multiply the terms
a5−a4×4
Use the commutative property to reorder the terms
a5−4a4
a5−4a4−(a−5)2
Expand the expression
a5−4a4−a2+10a−25
s=a5−4a4−a2+10a−25
Show Solution
