Question
Function
Find the first partial derivative with respect to x
Find the first partial derivative with respect to n
∂x∂s=180n−360
Evaluate
s=(n−2)x×180
Multiply the terms
More Steps

Evaluate
(n−2)x×180
Use the commutative property to reorder the terms
(n−2)×180x
Multiply the terms
180x(n−2)
s=180x(n−2)
Find the first partial derivative by treating the variable n as a constant and differentiating with respect to x
∂x∂s=∂x∂(180x(n−2))
Use differentiation rule ∂x∂(f(x)×g(x))=∂x∂(f(x))×g(x)+f(x)×∂x∂(g(x))
∂x∂s=∂x∂(180)x(n−2)+180×∂x∂(x)(n−2)+180x×∂x∂(n−2)
Evaluate
∂x∂s=0×x(n−2)+180×∂x∂(x)(n−2)+180x×∂x∂(n−2)
Evaluate
∂x∂s=0+180×∂x∂(x)(n−2)+180x×∂x∂(n−2)
Use ∂x∂xn=nxn−1 to find derivative
∂x∂s=0+180×1×(n−2)+180x×∂x∂(n−2)
Evaluate
∂x∂s=0+180n−360+180x×∂x∂(n−2)
Use ∂x∂(c)=0 to find derivative
∂x∂s=0+180n−360+180x×0
Evaluate
∂x∂s=0+180n−360+0
Solution
∂x∂s=180n−360
Show Solution

Solve the equation
Solve for x
Solve for n
Solve for s
x=180n−360s
Evaluate
s=(n−2)x×180
Multiply the terms
More Steps

Evaluate
(n−2)x×180
Use the commutative property to reorder the terms
(n−2)×180x
Multiply the terms
180x(n−2)
s=180x(n−2)
Rewrite the expression
s=(180n−360)x
Swap the sides of the equation
(180n−360)x=s
Divide both sides
180n−360(180n−360)x=180n−360s
Solution
x=180n−360s
Show Solution
