Question
Find the roots
s1=100−2026,s2=100+2026
Alternative Form
s1≈−1.98039,s2≈201.98039
Evaluate
s2−200s−400
To find the roots of the expression,set the expression equal to 0
s2−200s−400=0
Substitute a=1,b=−200 and c=−400 into the quadratic formula s=2a−b±b2−4ac
s=2200±(−200)2−4(−400)
Simplify the expression
More Steps

Evaluate
(−200)2−4(−400)
Multiply the numbers
More Steps

Evaluate
4(−400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×400
Multiply the numbers
−1600
(−200)2−(−1600)
Rewrite the expression
2002−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2002+1600
Evaluate the power
40000+1600
Add the numbers
41600
s=2200±41600
Simplify the radical expression
More Steps

Evaluate
41600
Write the expression as a product where the root of one of the factors can be evaluated
1600×26
Write the number in exponential form with the base of 40
402×26
The root of a product is equal to the product of the roots of each factor
402×26
Reduce the index of the radical and exponent with 2
4026
s=2200±4026
Separate the equation into 2 possible cases
s=2200+4026s=2200−4026
Simplify the expression
More Steps

Evaluate
s=2200+4026
Divide the terms
More Steps

Evaluate
2200+4026
Rewrite the expression
22(100+2026)
Reduce the fraction
100+2026
s=100+2026
s=100+2026s=2200−4026
Simplify the expression
More Steps

Evaluate
s=2200−4026
Divide the terms
More Steps

Evaluate
2200−4026
Rewrite the expression
22(100−2026)
Reduce the fraction
100−2026
s=100−2026
s=100+2026s=100−2026
Solution
s1=100−2026,s2=100+2026
Alternative Form
s1≈−1.98039,s2≈201.98039
Show Solution
