Question
Find the roots
s1=125−755,s2=125+755
Alternative Form
s1≈−42.705098,s2≈292.705098
Evaluate
s2−250s−12500
To find the roots of the expression,set the expression equal to 0
s2−250s−12500=0
Substitute a=1,b=−250 and c=−12500 into the quadratic formula s=2a−b±b2−4ac
s=2250±(−250)2−4(−12500)
Simplify the expression
More Steps

Evaluate
(−250)2−4(−12500)
Multiply the numbers
More Steps

Evaluate
4(−12500)
Multiplying or dividing an odd number of negative terms equals a negative
−4×12500
Multiply the numbers
−50000
(−250)2−(−50000)
Rewrite the expression
2502−(−50000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2502+50000
Evaluate the power
62500+50000
Add the numbers
112500
s=2250±112500
Simplify the radical expression
More Steps

Evaluate
112500
Write the expression as a product where the root of one of the factors can be evaluated
22500×5
Write the number in exponential form with the base of 150
1502×5
The root of a product is equal to the product of the roots of each factor
1502×5
Reduce the index of the radical and exponent with 2
1505
s=2250±1505
Separate the equation into 2 possible cases
s=2250+1505s=2250−1505
Simplify the expression
More Steps

Evaluate
s=2250+1505
Divide the terms
More Steps

Evaluate
2250+1505
Rewrite the expression
22(125+755)
Reduce the fraction
125+755
s=125+755
s=125+755s=2250−1505
Simplify the expression
More Steps

Evaluate
s=2250−1505
Divide the terms
More Steps

Evaluate
2250−1505
Rewrite the expression
22(125−755)
Reduce the fraction
125−755
s=125−755
s=125+755s=125−755
Solution
s1=125−755,s2=125+755
Alternative Form
s1≈−42.705098,s2≈292.705098
Show Solution
