Question
Simplify the expression
10s4−4
Evaluate
s4×10−4
Solution
10s4−4
Show Solution

Factor the expression
2(5s4−2)
Evaluate
s4×10−4
Use the commutative property to reorder the terms
10s4−4
Solution
2(5s4−2)
Show Solution

Find the roots
s1=−54250,s2=54250
Alternative Form
s1≈−0.795271,s2≈0.795271
Evaluate
s4×10−4
To find the roots of the expression,set the expression equal to 0
s4×10−4=0
Use the commutative property to reorder the terms
10s4−4=0
Move the constant to the right-hand side and change its sign
10s4=0+4
Removing 0 doesn't change the value,so remove it from the expression
10s4=4
Divide both sides
1010s4=104
Divide the numbers
s4=104
Cancel out the common factor 2
s4=52
Take the root of both sides of the equation and remember to use both positive and negative roots
s=±452
Simplify the expression
More Steps

Evaluate
452
To take a root of a fraction,take the root of the numerator and denominator separately
4542
Multiply by the Conjugate
45×45342×453
Simplify
45×45342×4125
Multiply the numbers
More Steps

Evaluate
42×4125
The product of roots with the same index is equal to the root of the product
42×125
Calculate the product
4250
45×4534250
Multiply the numbers
More Steps

Evaluate
45×453
The product of roots with the same index is equal to the root of the product
45×53
Calculate the product
454
Reduce the index of the radical and exponent with 4
5
54250
s=±54250
Separate the equation into 2 possible cases
s=54250s=−54250
Solution
s1=−54250,s2=54250
Alternative Form
s1≈−0.795271,s2≈0.795271
Show Solution
