Question
Simplify the expression
sin2(x)
Evaluate
sin(x)×21−cos(2x)
To take a root of a fraction,take the root of the numerator and denominator separately
sin(x)×21−cos(2x)
Multiply the terms
2sin(x)×1−cos(2x)
Transform the expression
More Steps

Evaluate
1−cos(2x)
Use cos(2t)=cos2t−sin2t to transform the expression
1−(cos2(x)−sin2(x))
Calculate
1−cos2(x)+sin2(x)
2sin(x)×1−cos2(x)+sin2(x)
Transform the expression
More Steps

Evaluate
sin(x)×1−cos2(x)+sin2(x)
Transform the expression
More Steps

Evaluate
1−cos2(x)+sin2(x)
Transform the expression
2sin2(x)
Rewrite the expression
sin2(x)×2
Calculate
sin(x)×2
Calculate
2×sin(x)
sin(x)×2×sin(x)
Multiply the terms
sin2(x)×2
Use the commutative property to reorder the terms
2×sin2(x)
22×sin2(x)
Solution
sin2(x)
Show Solution
